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Abstract 

Synchrotron Oscillation in accelerators or storage-rings with 

a very small yI ( =-!--I.) 
‘6T" r: 

can not be regarded as the ordinary 

pendulum oscillation. But, by the correction of lattice 

parameters, it is possible to minimize differences from the normal 

synchrotron oscillation. 
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1. Introduction 

A scheme/l/ has been recently proposed to produce a 

high-intensity antiproton beam in a stochastic cooling 

accumulator. According to this scheme thePbeam from a?? target, 

parameters of which are shown in Table 1, is injected in one turn 

in the Debuncher Ring. Each F bunch is captured by a stationary 

bucket. After the momentum spread of 4% is reduced by some RF 

manipulations, the beam is transferred to the Accumulator Ring. 

From requirements of beam transfer from the Debuncher to 

Accumulator and stochastic cooling accumulation, as small a final 

debunched momentum spread as possible is desired. For this 

purpose , the method of the so-called RF rotation/2/ is used. In 

this RF manipulation, the Debuncher Ring with the small value of 

y ( =$YY- %a] is designed from requirements of possible RF 

voltage. 

Although we neglect the non-linearity coming from the RF 

bucket, the synchrotron oscillation in such a ring can not be 

approximated in the term of the linear phase rotation. Namely the 

non-linearity coming from kinematical terms which couple with 

lattice parameters may become significants. 

In the present paper we study in detail the effects of the 

above non-linearity on the P bunch which has completed RF 

rotation. In addition, we explain a systematic correction method 

of lattice parameters to minimize its effects. 



Table 1 

Total Energy of ?? 

No. of F Bunches/Cycle 

No. of y/Bunch 

Total No. of F/Cycle 

Bunch Length (4a) 

dP/P, (uniform distribution 

Transvers Emittance (Ex=Ey) 

Cycle Time 

8.93826 GeV 

82 

1.22*106 

lo8 

Z12.8cm(t8.21° ) 

f2 % 

20 mm mrad 

2 set 

2. Longitudinal Motion of "d 

2-a Recursion Equations for Synchronous Oscillation 

The theory of longitudinal phase motion, describing the 

energy and phase oscillations that occur when a particle passes 

repitively through one or more W accelerating cavities " situated 

at localized points around the accelerator ring, is well known. 

Since the oscillations normally are at a relatively low frequency, 

it is often legitimate as well as convenient to analyze them 

theoretically with differential equations derived by spreading the 

accelerating field uniformaly around the orbit. In reality the 

energy changes experienced by a particle are better represented by 

step equations and depend on the sine of the electrical phase 

angle cp at which the particle traverses the cavity. The 

corresponding equations of motion are therefore non-linear and 

discrete. 
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We consider here the case of stationary motion. To obtain 

the actual transformation, we consider a short RF cavity system 

operating at a harmonic number h and an angular frequency tip* . 

The quantities denoted by En and ct) n are, respectively, the energy 

and the electrical phase angle with which a particle enters the 

cavity at the time of transit. 

may be written as follows: 

E w-1 = E, 

cb n+t = 4 n 

where eVsin*, is the energy 

period 2X/ U(E& is described 

Then the non-linear transformation 

+ eVstn+, (l-l) 

Zh 
+ WI-j' 

cot Ew) (l-2) 

gain per turn and the revolution 

in the form 

2-K L , 
t-u (Ed - c [ I - ( ~oc.%,,‘jz]~ 

(2 

with CO--- the length of the closed orbit corresponding to the 

synchronous energy E, , 

C ---the light velocity, 

m,c' ---the rest mass of?, 

EntI ---the energy of a particle at the (n+l)-th transit, 

Ap/p, ---the momentum deviation from the synchronous momentum PO 

(E Vi+1 -Eo )@:Eo r 

dP ---the momentum compaction factor. 

The synchronous particle is defined by the equation 

arf = h l LOW.1 . 

Now o(p may be written in the form 



where O(( AP/Po)ji) is the Landau symbol. In the present study, we 

neglect higher order terms than the second order one, since we 

suppose that these terms are small compared with other lower order 

terms. Evidently the momentum compaction factor dp depends on 

linear lattice's parameters and the chromaticity correction 

system. In particular d@) is decided exactly from requirement of 

where r; is the so-called transition gamma. On the other hand we 

do not know the exact value of d')at this stage. Therefore we 

cosider the cases with the fixed o(@'and various t$"'in this 

section. However it is noted that an usual machine roughly has 

coefficients dcu' , d"jof same order. 

2-b Phase Space Structure 

We study the phase space structure of the system which is 

described in the form of recursion Eqs.(l-l),(l-2). To do so, the 

ordinary mapping method is taken which is useful for studying a 

complicated non-linear system. Then the RF parameters and other 

parameters which are chosen in numerical computations are listed 

in Table 2. 



7 

Table 2 

Coefficients of Momentum Compaction Factor 

d (0) 

d(') 

d b) 

rv 

5 

1 
Harmonic 

RF Voltage 

Average Machine Radius 

v 

R 

1.3018*10-2 

-4.w+4.x10-2 

0. 

9.486 

8.765 

0.002 

90 

2. MV 

80.4 m 

Each of Fig. 1-a-l-i shows the phase spase structure of the 

system with the different d(". We can see the remarkably modified 

RF bucket and the existance of two stable resonance regions, 

particularly in Fig.l-a- l-d. They also indicate the sensitivity 

of the phase space structure to the parameter d"). So we make the 

reason clear why such a non-linearity appears in the above system 

I on the basis of the approximate Hamiltonian. 

First of all we may expand the right hand side of Eq.(2) in 

14) 
/ 

with 



From Eq.(4) we obtain $,+,in the form 

Q, Jlfl = 
t5) . 

Futher, replacing AP/P, with &+,, we have the non-linear recursion 

equations which take the form 

with 

(6-l) 

(6-s) 

(8) 

. 

. 

From (6-1),(6-2), we approximate the system to the Hamiltonian 

which is described in the terms 

where TO is the rotation period of the synchronous particle with 
the energy E,. Next changing the time scale 

27th 
t’ = - t, 

-G 
we have the Hamiltonian 

with 
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If we restrict ourselves to the region of I&l St-5 x102, we can 

neglect higher order terms than the third order term because of 

p+ 9 higher order terms 

Hence the Hamiltonian (8) becomes 

The canonical equations derived from (11) are 

(11) 

(12-l) 

(12-2) 

From (12-1) and (la-2), we obtain the fixed points C$,& 1 which 

satisfy the following algebraic equations 

They are (O,O),(O,&+),(O,s-),(rr ,0)J7[lr~+)~ and (x,g-) 

where sz 

It is trivial to caluculate these values for each cases. The 

calculated values are shown in Fig.2 and on the figures of each 

phase space structure. Apparently they agree with the simulation 

results in the neighbour of the region of interest/3/. This fact 

means that the Hamiltonian (11) is the correct model of the real 

system under present considerations. 

We have already suspected that the interaction between 
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different stable resonance regions may lead to a large 

modification of the RF bucket. The strength of interaction may be 

described in the term of the distance Lc_ between the stable 

resonate region available for RF rotation and the other stable 

resonance region, namely 

L+ = Ed-+\ I 

L, = 
E*ls_l l (13) 

When L+ is equal to L- , the effective interaction will 

disappear, in other words the system approaches a normal pendulum 

oscillation. It is easy to derive a condition for this; equating 

L+ to L, , we have ?e)= 0. From this condition, d(" becomes 

J" = - 3eo' A, -1 fj67r10°2 
2s,z - l 

. (14) 

It is also true that the simulation results, i.e. Fig.l-f gives 

supprt to the above expectation obtained from the approximate 

model(l1). 

2-c FBunch RF Rotation and Effects of Lattice Parameter 

In this subsection we show the simulation results of RF 

rotation. Unfortunately we do not know the value of d")which the 

normal chromaticity correction leaves. Therefore we investigate 

the system with #.p' which has been chosen in the previous 

subsection 2-b. 

From Table 1, we give one thousand of test particles initial 

conditions: the full energy spread of 4% (random distribution) and 
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the full phase spread of 24' (Gaussian with 10.=4.1'). Then these 

test particles are pursued during one quarter rotation in the 

stationary bucket. To do so, we iterate the recursion 

equations(l-l),(l-2) for one thousand of initial points which 

correspond to the above mentioned test particles. 

AS example, the initial-E; beam and the beam shape which has 

completed one quarter rotation are shown in Fig.3 and Fig.4. This 

example is the case with d"'= 0. From the previous subsection , 

it is easily understood that the modified bucket in Fig.3 and the 

antisymmetry of bunch tailes in Fig.4 come from the non-linearity 

for AP/P~. 

Now it may be interesting that the rate of the rotated particles 

which locate within a desired energy spread (0.6%) is represented 

as the function of CA"'. The rate is shown in Fig.5. It, as our 

expectation, indicates that the RF rotation in the un-modified 

bucket is most desirable. In addition, Fig.5 has a important 

meaning on designing a machine. Namely it gives the tolelance on 

d (" and its desired standard. 

3. Control of Lattice Parameter 

3-a Equations for the correction 

To make the problem simple, we consider only up to the second 

order in momentum error 6 = AP/PO , and neglect nonlinear 

lattice components except for the correcting sextupole magnets. 

Expanding in the Fourier series, we get the equations as 



12 

fallows/4/, 

for tune shifts, 

for the equilibrium orbit in the horizontal oscillation, 

%.o.d = 6 
and for the circumference, 

c = C*( 1+ o(@'& + ()P' &') P 
where 

and 

Fourier components are given by, 
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I 2'14 
a;n =f-- 

28 J &'&g-s l,)cos (n (pi 1 d+L 
a 

qn +b;, 

where upper (lower) sign corresponds to x (y) and 

F” = 
m 

F; = 

C =2gR 

where d and y mean the horizontal and the vertical coordinate, 

respectively. In the above, we assume that the lattice has a 

reflection symmetry. 

In usual case the main contribution comes from the zero-th 

harmonic since the lattice elements and the correcting sextupoles 

are almost uniformly distributed. 

First, we assume that the linear chromaticity is already 

corrected ( jT'=O) by a usual way r then we can estimate 

r 
co 
i 

and o(“' using the smooth approximation as follows, 
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Fi = 

Fr) = 4w 4g (2 5,, + A& )=-l-p- fix0 

T* = j& b&o =R/I?;o 

kY'=- bal/(2 3;: )= B;&+ $;u ) 

Otto' =(F;)'/ (R gx;3 )=l/+$ 

o(u) = a‘*'(-2 &, -A& -l)= ol;‘*'(- +&a -1) l 

In the estimation of tic\) , we negrect dlo/ds . 

(15) 

Second, we must control o(O) without any change in another 

parameters. The most perspective way seams to vary the harmonic 

F& ,m- "3x0 with sextupoles. The contribution from non-zero-th 

harmonics are given by, 

(16) 

(17) 

It is enough to consider only the horizontal oscillation 

because it is easy to keep the changes in the vertical negrigible, 
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so we do not denote index x from this. 

Since the linear lattice elements are almost uniformly 

distributed, we can neglect terms except for ones caused by 

sextupoles in Eq.(16) and we get, 

where index s means values at the location of sextupoles. From 

Eq.(15) we can roughly approximate cX~"Y CXCoJ and the result of 

the previous section gives the desired value as, 

( /q > XL : Lorents factors) . 

In our problem the maximum momentum error of beam reduces 

less than 0.5 % after a quarter period of a synchrotron 

oscillation, so it is reasonable that we impose the condition 

given by, 

t 

This means that the maximum tune shift is 0.04 at ii =&2 %. 

Finally we get the equations for the control of WC". 

We must remember aia=O and sib Z-1. 

We choose two integers mt and ma just close to t)O and, 

m, %A< m2 

When we excite A FL, and AF' I 
% in keeping the ratio A F&/&,F~~ 
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Y to be about (~z-m,2)r/(~~z-m~ )% , the variation 111 !i 
Cb) is expected 

to be small enough. We should excite these harmonics in the 

opposite or the same phase corresponding to the sign 

of F&/ F& . But if i)O is more close to ml than m2 , for 

example, A@)is affected mainly by A$, r and we only 

excite &FL2 according to the ratio mentioned above without any 

care of the effect on &Xc'). We can also expect that P 
affected so much in this control since in the first order 

get, 

Ap sz 2an - =- 
e VrLb 4L'B"-M" 

cos(n ) (P . 

is not 

we can 

(18) 

In principle it is easy to find the best combination of 

sextupoles. Suppose F and S are vectors composed of the Fourier 

components to be controlled and of the sextupoler strength, 

respectively, we can write F=A*S. The problem is to find a 

suitable matrix G which satisfies F=D*G*S where D is diagonal. 

This gives G=l?!A. 

3-b Example 

we show the numerical calculations for the proposed debuncher 

ring of the 5 source/5/. The lattice has a reflection symmetry 

and the superperiodicity of 2. Its quadrant is shown in Fig.6. 

Table 3 shows the betatron oscillation parameters at the location 

of the sextupole magnets. The most effective combination is 

determined from Table 3 and named mode (a). To compare this with 
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a bad correction, we also take mode 
(b) l They are shown 

schematically in Fig.7. Fig.8 - 9 show how the parameters vary 

with the strength of the modulation 5SF. These parameters are 

calculated by the program SYNCH. From Fig.10 we summarize as 

below, 

Mode (a) Mode (b) 

Ad'74 SF -3.8 -7.0 x10 -2 
(mZ 1 

$ A$%ASF )' +4.0 -40. x10 ' (m4 ) 

In this ring (9: -l# {/(3,L-12')'~1/2, so Af“'is small as 

expected in the mode (a) l Fig.11 shows the variation of the 

maximum @ in the mode (a). The variation in the first order of 

momentum error is as small as our expectation with Eq.(18). But 

the variation in the second and the higher order is so large when 
o( Cl> -2 =-1x10 , since we change qr so strongly to get large 

variation of &to) , and this change excites harmonics a'n given 

Then we can easily get the variation of @ in the second oeder 

in s as, 

In conclusion the control of tiQ' in our debuncher ring is 

limitted by the maximum variation of P in the method 

mentioned in this section. But it is possible to get C%(I) =0 which 

is enough from the results of Section 2, without any trouble in 

the betatron oscillation. 
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Figure Captions 

Fig.l-a-1-i: The figures show the phase space structure for the 

system with the parameter d")of different values. 

x or Q on each figure mean the unstable, stable 

fixed point of the approximate system. 

Fig.2: Center positions of the stable resonance islands 

versus the parameter d"'. 

Fig.3: The assumed initial shape of the antiproton beam and 

RF bucket. 

Fig.4-a: Bunch shape after 90' RF rotation. 

Fig.4-b: Energy distribution after 90° RF rotation. 

Fig.5: I') Momentum reducing efficiency versus the parameter d 

Fig.6: Quadrant of the debuncher ring. 

Fig.7: Excitation modes of the sextupoles. 

Fig.8: Variations of the tunes and the momentum compaction 

parameter in the mode (a). 

Fig.9: Variations of the tunes and the momentum compaction 

parameter in the mode (b). 

Fig.10: (0 d and $"'versus the strength of the modulation ASF 

in the mode (a) and (b). 

Fig.11: Variations of the maximum values of p in the 

mode (a). 
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Fig. 1 - g Fig. 1 - h 
a(l) = "3 x 10-2 
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Positions of Stable 
Resonance Islands 





Fig. 4 - b 

Energy Distribution after 
90° RF Rotation 

Fig. 5 
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Quadrant of the Debunching Ring 



Excitation Modes of the Sextupoles 

Mode (a) 

SD0 SD1 SD2 SD3 SD+ SDS SD4 SD? 
SF7 

Mode W 

W 

a 
3 I 

20 0.6 

a22 = -8.0 

QF 1 
10 44 . 

AF I '2, c 8.0 

03) 
\ -63 

-I5 
my 

Y Ynt 



Fig. 8 Variations of the tunes and the Momentum Compaction 
Factor in the Mode (a) 
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Fig. 9 Variations of the tunes and the Momentum Compaction 

Factor in the Mode (b) 
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Fig. 10 
o(“land 3 ‘I’ versus the Strength of the Modulation 

ASF in the Mode (a) and (b) 
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Fig. 11 Variations of the Maximum Values of p in the Mode (a) 
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